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Abstract— We study a non-linear mathematical model for the transmission of HIV disease. The model is represented by a system of 

differential equations depending on parameters. We divide the population into three subclasses: uninfected cells,  infected cells and free 

virus particles. A factor deciding the spread of virus is the basic reproduction number R0. We found that if R0 < 1 then the disease goes 

extinct, whereas if R0 > 1 then the disease remains. This phenomenon is explained by a transcritical bifurcation. A numerical investigation 

for the model is carried by the software Mathematica and AUTO. 

Index Terms— Bifurcation, free disease equilibrium, endemic disease equilibrium, basic reproductive ratio, transcritical bifurcation, 

transmission, virus.   
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1 INTRODUCTION                                                                     

 IV is primarily a sexual transmitted disease, its spread  
reflects the social pattern of human sexual  relationships. 
Since it was discovered in 1981, HIV has become one of 

the leading causes of death of people in countries. HIV has 
killed an estimated 25 million individuals world wide [2, 7, 
14].  

One of the most important concerns about any infectious 
disease is its ability to invade a population. The dynamics be-
tween virus infections and the immune system involve many 
different components and are multifactorial. The understand-
ing of the long-time behaviour of this disease will help us to 
find whether this epidemics will die out or stay in the popula-
tion and to design strategies of fighting them. 

Mathematical models and computer simulations have be-
come useful in analyzing the spread and control of infectious 
diseases. They build and test theories that are involved with 
complex biological systems related disease, getting quantita-
tive conjectures, determining dynamical parameters due to 
change and estimating parameters from data. 

Various approaches for studying epidemiology of HIV 
have been developed in recent years [1, 2, 3, 8, 9, 11, 13]. Many 
epidemiological models have a free disease equilibrium (FDE) 
at which the population remains in the absence of disease. 
These models usually have a threshold parameter, known as 
the basic reproduction number, R0, such that if R0 < 1, then the 
FDE is locally asymptotically stable, and the disease cannot 
invade the population, but if R0 > 1, then the FDE is unstable 
and an epidemic is expected. 

In this paper, we study a HIV endemic model as mentioned 
in [13]. The model is given by a system of three dimensional 
ordinary differential equations depending to parameters. The 
population size is divided into three subclasses, that are unin-
fected cells,  infected cells  and free virus particles.  We assume 
that the environment is homogeneous. 

Our emphasis lies on obtaining a mathematical 
understanding of the dynamics and bifurcation of the model. 
We analyze the stability of equilibria and exhibit phase 
portraits for competition dynamics. We show that the factor 
that govern the dynamics of the model is the basic reproducc-
tive number R0. Transcritical bifurcation is useful to explain 
the exchange of stability of equilibria. Obtained results explain 
the transmission of disease in the HIV model.  Numerical 
method is used to investigate behaviour of the  model.  

2    THE STUCTURE OF THE MODEL 

The endemic model of HIV consists of three variables: the 
population size of uninfected cells x,  infected cells y and free 
virus particles v.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Flow diagram of  the HIV endemic model 

Free virus particles infect uninfected cells at a rate propor-
tional to the product of their abundances, xv. The rate  de-
scribes the impact of this process, including the rate at which 
virus particles find uninfected cells, the rate of virus entry, and 
the rate and probability of successful infection. Infected cells 
produce free virus at a rate . Infected cells die at a rate , and 
free virus particles are removed from the system at a rate . 
One can see that the average life-time of an infected cell is 1/ , 
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Fig 1.Transmission diagram of the virus model 
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whereas the average life-time of a free virus particles is 1/ . 
The total amount of virus particles produced from one in-
fected cell is / . Uninfected cells are produced at a constant 

, and die at a rate . The average life-time of an uninfected 
cell is 1/ .   

In accordance with the previous assumptions, the model is 
given by the following differential equations 

                             

,

,

.

dx
x xv

dt

dy
xv y

dt

dv
y v

dt

                               (1) 

We assume that parameters , , , ,  and   are positive.    

The system (1) is a system of nonlinear differential equa-
tion. To study the dynamics of this system, we consider the 
linearization at equilibria. 

3    ANALYSIS OF THE MODEL 

3.1  Invariant set 

We establish the invariant set of the system (1) that is the 
first quadrant 

{( ( ), ( ), ( )) : ( ) 0, ( ) 0, ( ) 0}D x t y t v t x t y t v t . 

This means that the solution of the system is still in D for t > 0. 
Hence, for the rest of the paper we only focus on system (1) 
restricted to D. 

3.2  Equilibria 

To find equilibria, we set the right-hand side of the system 
(1) equal to zero. There are two equilibria in the (x, y, v) space: 

1) The free disease equilibrium E0( / , 0, 0) . 

2) The endemic disease  equilibrium E1(
* * *, ,x y z ), where  

              * ,x   * ,y  * .v        (2) 

The equilibrium E0  always exists, while E1 only exists for        
 > . 

 

3.3  The basic reproductive ratio 

 
The dynamics of the HIV model is decided by the basic re-

productive ratio R0, which is defined as the number of newly 
infected cells that arise from any one cell when almost all cells 
are uninfected. We found that 

                                         0R .                                       (3) 

As R0 < 1, the system has an unique equilibrium E0 and it is 
stable. For R0 > 0, the system has two equilibria E0 and E1, 
where E0 is unstable and E1 is stable. 

In the next section, we will show that for  R0 < 1 the trans-
mission is extinct whereas for R0 > 1 the virus still remain. 

We consider two cases to illustrate the characteristics of the 
basic reproductive ratio R0. 

* Case R0 < 1 

       Choosing   = 1,  = 2,   = 7,  = 0.5,  = 2,  = 0.45, we 
have R0 = 0.634921 < 1. With the initial condition x(0) = 0.09,  
y(0) = 0.025, v(0) = 0.035,  one can see the infected cell compo-
nent y(t)  0 and the free virus component v(t)  0 as t . 
This means that the epidemics will die out (see Fig 2).  

 
 
 
 
 
 
 

 

 

 

 

 

 

* Case R0 > 1  

Choosing   = 1.2,  = 1.5,   = 5.5,  = 1.85,  = 2,  = 0.75, 
we have R0 = 1.12121 > 1.  With the initial condition x(0) = 0.2, 
y(0) = 0.025, v(0) = 0.5,  one can see the infected cell compo-
nent y(t)  0.751 and the free virus component v(t)  0.4325 
as t . This means that the epidemics still remain (see Fig 3). 

 

 

 
 
 
 
 
 
 
 
 

 
 

 

4   STABILITY OF EQUILIBRIA 

The local stability for equilibria is determined by the 
Jacobian matrix of the system (1), which is 
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Fig 2.  Time series of  x, y and v for R0 < 1. 
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Fig 3.  Time series of  x, y and v for R0 > 1. 
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0

0

v x

J v x . 

4.1  The free disease equilibrium E0 

The free disease equilibrium E0( / , 0, 0) always exists for      
 > 0 and  > 0. 

Theorem 1.  The free disease equilibrium E0 is locally asymptotical-
ly stalble for R0 < 1  and unstable for R0 > 1. 

Proof.  The Jacobian matrix at E0 is given by 

0

0

0

0

J . 

The eigenvalues are obtained by solving the characteristic 
equation det(J0 −λ I) = 0 due to Mathematica. We get the fol-
lowing eigenvalues:                 

     1 ,  

2 2
2

1
( ) 4 2

2
, 

2 2
3

1
( ) 4 2

2
. 

We see that  1 < 0, 2 < 0. When R0 < 1, we have  <  
and 

2 2
3 ( ) 4 2 . 

This implies 3 < 0. Therefore, E0 is stable.  

Similarly, if R0 > 1 then   > . It leads to  3 > 0  and E0 
is unstable.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Remark 1.   For R0 < 1, if u(t) = (x(t), y(t), v(t)) is a solution of 
the system (1) near to E0( / , 0, 0) then u(t)  E0 as t  . 
Therefore,  u(t)  0 and v(t)  0 as t  . This means that the 
epidemics will die out. 

4.2  The endemic disease equilibrium E1 

     For R0 > 1, from (2) we can see the endemic disease  equi-
librium E1(x*, y*, z*) has positive coordinates. Therefore, E1 is 
belonging to the invariant set D. 

Theorem 2. The endemic disease equilibrium E1 is only existed and 
locally asymptotically stable for R0 > 1. 

Proof.  The Jacobian matrix evalued at E0 is given by 

* *

* *
1

0

0

v x

J v x , 

where x*, y* and v* are given by (2).  

Solving the characteristic equation det(J1 −λI) = 0 by Ma-
thematica, we obtain the following eigenvalues:                 

    1  < 0, 

   

2 4 2 3 3 2 2 2 2

2

4 2
,

2
 

   

2 4 2 3 3 2 2 2 2

3

4 2

2
. 

        It is easy to see that  1 0 ,  2 0 . For R0 > 1, we have 
 >  and 

2 4 2 3 3 2 2 2 24 2  

This implies 3 0 . Therefore, E1 is stable.   
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Fig 5.  Phase trajectories of the system (1) on the (y, v) plane.  
The circle stands for E0 and the solid circle is for E1. 
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Fig 4. Phase trajectories of the system (1) near E0 on                 
the (y, v) plane. The circle stands for E0. 
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Remark 2.   For R0 > 1, if u(t) = (x(t), y(t), v(t)) is a solution of 
the system (1) near to E1(

* * *, ,x y z ), where  * * *, ,x y z  are given 
by (2), then u(t)  E1 as t  . Therefore,  u(t)  * 0x  and 
v(t)  *y > 0 as t  . This shows that the transmission re-
mains. 

5 BIFURCATION ANALYSIS 

In this section we study the change of solution of the system 
(1) as parameters vary. The change of dynamical feature of the 
system is called bifurcation. In order to explain bifurcation of 
the system we assume that the equilibrium E1 exists for R0 < 1, 
although this is untrue. The software package AUTO is useful 
tool to detect bifurcation points. 

The free disease equilibrium E0 always exists. As R0 > 1, it is 
unstable. When R0 < 1, it is stable, and this is correspondent to 
the transmission die out. The disease virus equilibrium E1 only 
exists for R0 > 1. It is stable and this case corresponds to the 
epidemics still remain. Transcritical bifurcation occurs as        
R0 = 1. At this value, E0 loses its stability (the eigenvalue 3 
moves from negative to positive) and change from stable to 
unstable. For R0 > 1, E1 go from unstable to stable. Two equili-
bria exchange their stability. This bifurcation explains the 
meaning of the basic reproductive ratio R0 that decide the epi-
demics die out or remain. 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

      

     By using the software package AUTO [3], one can detect the 
transcritical bifurcation of the equilibria E0 and E1. Fixing the 
following parameters   =1,   = 7.0, γ = 0.1,  = 0.5,  = 2.0, 

  = 0.45 and let  varies. We note that  is important parame-
ter that cause the infection of virus on cells. Continue from the 
free disease equilibrium E0  with x  = 0.0714286, y = 0 and v = 
0, AUTO detects a transcitical bifurcation occurs at value  = 
3.1499 that correspond to R0 = 1. At this value, two equilibria 
exchange their stability. 

Figure 6 shows the bifurcation diagram of the HIV model 

computed by AUTO. The horizontal axes stands for the para-
meter  and the vertical axes is for values of y. The line con-
tains solutions 1, 2, ..., 10 is the line of the free disease equili-
bria and the line consists of solutions 13, 12, 11, 2, 14, 15 and 16 
is the line of the endemic disease equilibria. The dashed line is 
unstable and the solid line is stable. The transcritical bifurca-
tion occurs at the solution 2.  

6   CONCLUSION 

A model for the infection of HIV was constructed and ana-
lyzed. We examine the potential effects of the proximate de-
terminants of HIV transmission dynamics alone and in combi-
nation.  There are two equilibrium points for this model, first, 
E0 occurs when all the cells are not infected and there is no 
contaminated process. This point is called a disease-free equi-
librium point. Second, E1 occurs when there are HIV-infected 
cells and contaminated process. Several parameters affect on 
x(t), y(t), and v(t). One of important parameters is the rate  
that relating to infection of virus on uninfected cells.  The basic 
reproductive ratio R0 is the factor that governs the transmis-
sion of disease. By governing suitable parameters, one can let 
R0 < 1 and the disease will die out. The theory of dynamical 
system shows that a transcritical bifurcation occurs for R0 = 1. 
The software Mathematica and AUTO is used to describe the 
dynamics of the model. This model reflects many stability 
properties of more complicated models. 
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